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ABSTRACT
Enhancers are short regions of non-coding DNA that increase tran-
scription rates of genes despite being located distantly from the
genes themselves [5]. Enhancers are identified through experimen-
tal techniques such as ChIP-Seq or CUT&RUN with H3K4me1 and
H3K27ac histone modifications, self-transcribing active regulatory
region sequencing (STARR-Seq), and massively parallel reporter
assays (MPRA). Machine learning models have been used in con-
junction with experimental data to identify enhancer activity from
sequences [3], predict enhancer-transcription factor interactions
[4], and decode the enhancer regulatory language [2].

We describe a framework that connects peak calling errors to
the prediction accuracy of sequence models. The key assumptions
of our framework are that (1) enhancers have consistent sequence
patterns that can be used to separate enhancers from control se-
quences, (2) errors in the training data impact prediction accuracies
in predictable ways, and (3) prediction accuracy is a useful proxy
for evaluating peak calling accuracy. In the framework, data sets
are constructed from peak (positive) and randomly sampled (con-
trol) sequences. Machine learning models are trained and evaluated
on the sequences in a cross-chromosome (cross-fold) setup. Lastly,
precision of the originating peaks are evaluated by calculating true
and false positive rates.

We applied our framework to evaluate peaks for D. melanogaster
STARR-Seq data [1] called with the MACS software [6]. Although
designed for ChIP-Seq data, MACS can be used to process other
types of data, but users must be careful about parameter choices. We
evaluated different parameter combinations with our framework
and visual comparisons of called peaks. True and false positive rates
ranged from a high of 88.0% to a low of 74.7% and from a low of
18.6% to a high of 49.4%, respectively. The default MACS parameters
produced the highest true and lowest false positive rates, suggesting
that the default parameters are also suitable for STARR-Seq data.
Our results demonstrate the utility of our framework through a
practical application and provide a base for future development.
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